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THEOREM. Let.# be a C*-algebra with unit I, and let {Pn } be a sequence of
positivity-preserving linear maps sending .# into .# and satisfying Pnl <; I. Then

is a norm-closed Jordan algebra of self-ad/oint elements of .#, i.e., a real linear
subspace of.# closed under the Jordan product To L = (TL + LT)j2.

When .# = C[a, bl, this reduces to a version of Korovkin's well-known
theorem on approximation by positivity-preserving linear methods. Analogs
of the theorem above are shown to hold in the weak operator topology and the
strong operator topology. Also considered is convergence in trace norm when
{Pn} acts on the trace class.

The only type of approximation procedure considered here is that using
positivity-preserving linear methods, which (see [3]) plays an important role
in commutative approximation theory. The well-known theorem of Korovkin
asserts that if {Pn } is a sequence of positivity-preserving linear maps of
C[a, b) into itself, then Pnf ---+ f for all f in C[a, b), provided only that
Pnl ---+ 1, Pnx ---+ x, and Pnx 2 ---+ x 2• In other words, if the (positivity
preserving and linear) approximation procedure works for x and x 2, and for
1 (and ]2), then it works for the Banach algebra generated by x and 1.

This leads us to study the thesis: "Success by an approximation method
on some elements and their squares implies success on the algebra generated
by those elements." We shall see that, under mild hypotheses, this thesis
holds in algebras of operators (with diverse notions of convergence), provided
we consider the algebra generated using the Jordan product

To L = (TL + LT)j2.

In the noncommutative situations in which we are interested, the Jordan
product is commutative, distributive, but not associative.
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Korovkin's theorem has been generalized already to various Banach space
settings. Some of the latest work may be found in [5]. Our approach is along
the lines of [1], which seems to be the earliest attempt to consider Korovkin's
theorem in the setting of a Banach algebra.

Throughout, {Pn} will denote a sequence of positivity-preserving linear
maps from the algebra under consideration into itself. We first consider norm
convergence when {Pn } acts on a C*-algebra. In later sections we consider
weaker and stronger types of convergence.

I. NORM CONVERGENCE IN C*-ALGEBRAS

A C*-algebra is a (complex) Banach algebra d with involution * whose
norm satisfies II T*TII = II TII2 for Tin d. By the theorem of Gelfand and
Naimark [8, Theorem 1.16.6, p. 41] a C*-algebra is *-isomorphic to a
norm-closed self-adjoint subalgebra of .!l'(£') for some Hilbert space £'.
When d is identified with such a subalgebra, then a positive element of d is
an operator Ton £' that is self-adjoint (T = T*) and whose spectrum sp(T)
is contained in the nonnegative reals. We write T;;" 0 in this case. We say
that a linear map P: d ---+ d is positivity-preserving if T ;;" 0 implies PT ;;" O.

Let d be a C*-algebra with unit I, and let ~, denote the set of all self
adjoint (s.a.) elements of d. Let {Pn} act on d. Assume

(1.1)

We are interested in the following sets:

o/t = {TEds III PnT - Til ~ O},

f = {T E o/t I T2 E o/t}.

The idea of the following proof will be used again in the sequel.

THEOREM 1.1. f is a Jordan algebra of s.a. elements of d, i.e., f is a
real linear subspace ofd s , closed under the Jordan product.

Proof f is clearly closed under multiplication by real scalars.
We need only show f closed under squares and sums, since 2T 0 L =
(T + L)2 - T2 - £2.

Assume T E d s , L E d s , ,\ E R. As we go on, more will be assumed of T
and L. Kadison's Schwarz inequality [4] asserts that if P: st ~ d is linear,
positivity-preserving, and PI :(; I, then

(1.2)
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Letting X = T + AL results in

Pn(T)2 + 2APnCT) 0 Pn(L) + A2pn(LF

~ PiP) + 2J\Pn(To L) + ),.2Pn(D) ,

Assume II L II ~ 1, so that L2 ~ II Vii I = II L 11 2 I ~ I. Then,

Pn(U') ~ P ,,(L)2 ~ P,,(V) ~ Pn(1) :( I.

Relations (1.3) and (1.4) imply that for all real A,
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(1.3)

(1.4)

Now, assume T E f. Then, Pn(T2) - Pn(T)2 ---+ O. Given E > 0, find N
such that n ;;? N implies II P..(T2) - P,,(T)211 ~ e2• Then, by (1.5), n )0 N
implies

where N depends on e but not on A. ,\ = ±e yields

n ~ N. (1.6)

Finally, assume L E 'PI. (1.6) then shows lim sup H To L - PneT 0 L)II :::; e.

Hence, To L E 'PI. The assumption II L II ~ 1 being inessential, we have
proved that

and L E 'Pt implies TaL E dIt. (1.7)

By induction using (1.7), T E f implies Tk E~. In particular, T E /

implies T2 E f, so / is closed under squares. To see that / is closed under
sums, assume / contains T1 and T2 • Then oll, being a real subspace, contains
T1 + T2 , as well as T1 and T2 • The subspace dll also contains

since each of these terms is in °71 by (1.7). Hence, / contains T1 + T2 .

This completes the proof.

LEMMA 1.2. dll and / are norm-closed.

Proof If T is in 4" then -I T il ~ T ~ Ii T Ii, so p.,1 ~ I implies
II PnTl1 :::; II Til· Using this, a standard 3e-argument shows dll to be norm
closed, from which it follows trivially that / is norm-closed.

Consider a single s.a. operator T. The foregoing shows that the approxi
mation method works on the C*-algebra generated by T, provided only that
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it works on T and on P. A second consequence is that f + if is a "J*
algebra," i.e., a norm-closed, *-closed, complex-linear subspace of d that is
closed under the Jordan product. This makes our Main Theorem easy to
prove.

THEOREM 1.3. Let {Pn} be a sequence of positivity-preserving linear maps
of a C*-algebra d into itself such that PnI ~ I. Then,

(a) f = {TEd" IPnT~ T, PnT2~ P} is a norm-closed Jordan
algebra of s.a. elements of d;

(b) 't?={TEdIPnT~T, PnP~P, PnT*oT~T*oT} is a
J*-algebra.

Proof It remains only to show't? = f + if. The remark made above
implies f + if C 't? To see the reverse inclusion, assume C E 'f}. Pn , being
complex-linear and positivity-preserving, commutes with involution. Thus,
Pn(C*) ~ c* (implying that T == Re C and L == 1m C are in oft) and
Pn(C*2) ~ C*2. The subspace r1If contains T2, since

4P = C2 + C*2 + 2C* 0 C;

and r1If contains C* 0 C - P = V as well. Hence, T E f and L E f, i.e.,
C E f + if. This completes the proof.

Instead of (Ll), we could have assumed II PnIl1 ~ 1, as can be seen by
applying Theorem Ll toPn' = (l/IIPnllI)PnandobservingPn'T~ Tifand
only if PnT~ T.

'f} need not be an algebra (unless d is commutative): Let d be the algebra
of 2 X 2 matrices with complex entries, let P: d ~ d be the transpose
operator, and let {Pn} be the constant sequence Pn = P. Then, T = (~~)

and L = (~~) belong to 'f}, but TL does not.
When d is commutative, the Jordan product becomes the ordinary

product, a J*-algebra becomes a C*-algebra, and a Jordan algebra of s.a.
elements can be identified with an algebra of real functions. Let X be a
compact Hausdorff space, let C(X) and CcCX) denote, respectively, the
algebras of real-valued and complex-valued continuous functions on X,
with supremum norm. Taking d = Cc(X), we can write the commutative
version of Theorem 1.3 in more familiar notation.

THEOREM 1.4. Let {Pn} act on CcCX). Assume Pnl ~ 1 (or II Pnl11 ~ 1).
Then,

(a) {IE C(X) IPnf~ f, Pn j2 ~ j2} is a real C*-algebra;

(b) {IE CcCX) IPnf~ f, Pn j2 ---+ j2, Pn Ifl2 ---+ If12} is a complex
C*-algebra.
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When X = [a, b], Korovkin's theorem is a corollary of (a), as a conse
quence of the Weierstrass polynomial approximation theorem.

Theorem 1.4, in conjunction with the Stone-Weierstrass theorem, could
be useful in proving the effectiveness of an approximation method on C(X).
To employ the noncommutative result, a "Jordanized" Stone-Weierstrass
theorem might be helpful.

II. WEAK AND STRONG CONVERGENCE

Let £ be a complex Hilbert space with inner product <', ), let 2"(£) be
the C*-algebra of all bounded linear maps of £ into £, and let d be a
*-closed algebra contained in L(£) and containing 1. Assume Pn (positivity
preserving) sends d into d and satisfies PnI ~ I. Since Pn extends naturally
to the norm-closure of d, a C*-algebra, Kadison's inequality holds on Pn •

We are interested in the same thing as before, but with weaker notions of
convergence. For a sequence {Tn}in d we write Tn -+ T(wk), or Tn -+ T(st),
to denote, respectively, convergence of {Tn} to T in the weak, or strong,
operator topology.

THEOREM 2.1. /wk = {TEd. IPnT-+ T(wk), PnT2-+ P (wk)} and At =

{T E d. I PnT -+ T (st), PnP -+ P (st)} are Jordan algebras ofs.a. operators.
Moreover, /wk = /st .

Proof. Since most of the proof is like that of Theorem 1.1, we simply
indicate the necessary modifications. We first consider weak convergence.
Let rp be a unit vector in £. From (1.5) we have T E,sf, , LEd. , II L II ~ 1
implies that for all real A,

2>"«PnT 0 P nL - PnT 0 L)rp, rp) ~ «Pn(T2) - P n(T)2)rp, rp) + >,,2.

In order that the argument be allowed to proceed as before, we must show
that T E /wk implies the inner product on the right tends to zero.

A slight difficulty arises here. We need to know that P n(T)2 -+ P (wk), and
this does not follow from the condition PnT -+ T(wk), the squaring operation
being discontinuous in the weak topology. However, assume T E fWk and
consider the expansion

II(PnT - T)rp 11 2 = <Pn(T)2 rp, rp) - <Trp, PnTrp)

- <PnTrp, Trp) + <Trp, Trp). (2.1)

By (1.2), <Pn(T)2 rp, rp) ~ <Pn(P)rp, rp). From this and (2.1), it is easy to
conclude lim sup II(PnT - T)rp 11

2 = O. We have thus proved that

T E fWk implies PnT -+ T (st). (2.2)



256 W. M. PRIESTLEY

Now that we have strong convergence of PnT it follows that

(Pn(T)2 ep, ep) = (PnTep, PnTep) ---+ (Tep, Tep) = (T2ep, ep),

overcoming our difficulty and allowing the argument to proceed as before.
To complete the argument we need to know that (PnT 0 PnLep, ep) tends to
(To Lep, ep) if TE /wk and PnL ---+ L (wk). This also follows easily with
help from (2.2). Hence, /Wk is a Jordan algebra.

To finish the proof of Theorem 2.1 we show /wk = /st . Assume T E/wk .
Then T4 E /Wk since /wk is a Jordan algebra, and hence, (Pn(T4)ep, ep) tends
to (T4ep, ep) for all ep in .Ye. Using this and the argument proving (2.2)
(with T2 in place of T), we conclude PnP ---+ T2 (st). Thus, T E /st. This
completes the proof.

We refrain from stating the corollaries of Theorem 2.1 analogous to those
of Theorem 1.1. Instead, we note some facts to be used in the sequel.

In case d does not contain I, we could have assumed instead that
II PnT II ~ II T II, if T E d s • Then, by adjoining I and extending Pn linearly
(leaving I fixed), we are back in the original situation.

Assume T E /wk and E E d, where E is a spectral projection of T. When
does it follow that E E /Wk ? A sufficient condition is that E be the spectral
projection associated with an open and closed subset of sp(T). To see this, it is
enough to consider the case when d is norm-closed, since we assume E E d
at the outset. In this case /wk easily can be shown norm-closed, so
Theorem 2.1 implies /wk contains the closure of the set of polynomials in T,
which contains E.

Another condition that implies E E /wk is that E be a projection associated
with an interval whose end points do not lie in the pure point spectrum of T.
However, since this result is not needed in what follows and since its proof is
detailed, we omit the proof.

III. CONVERGENCE IN THE TRACE CLASS

Let {epj} be an orthonormal (o.n.) basis for a Hilbert space .Ye. The trace
class.9"' consists of all operators Tin 2(.Ye) such that

II TII.r = tr I TI == L (I TI f{Ji' epi) < 00,

where I T I = (T*T)1(2. II T 11.r is independent of choice of o.n. basis, and .9"',
II . 11.r is a Banach algebra [9]. The collection of s.a. elements of.9"' is denoted
by.9"'s.

We are interested in the same thing as before, but with the stronger notion
of convergence in trace norm. The following lemma casts some light on
convergence in the trace class.
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LEMMA (Davies [2, p. 291]). Let {Tn} be a sequence ofpositive operators
in s-. such that Tn -+ T (wk) and T is in s-.. Then, II T - Tn 115"" -+ 0 if and
only iftr Tn -+ tr T.

Since I ¢=.r, the assumptions of our theorem are formulated a little
differently, the first assumption being stated in terms of the operator norm
rather than the trace norm. We must also assume that the norms of the Pn ,

as maps of .r, II . 115"" into itself, are uniformly bounded. As usual, Pn is
assumed linear and positivity-preserving.

THEOREM 3.1. Let {Pn} act on .r. Assume

(i) II PnTl1 ~ II Til, TEs-.;

(ii) sup II Pnil < 00.

Then, /tr = {T E s-. III PnT - T Ily -+ 0, II PnT2 - P Ily -+ O} is a II . Ilr
closed Jordan algebra of s.a. operators in .r.

Proof The proof is broken down into Lemma 3.2, Lemma 3.3, and
Corollary 3.5.

LEMMA 3.2. /tr is a real subspace.

Proof Assume T and L are in /tr . Taking the trace of both sides of (1.3)
and using once again the basic argument there, we conclude tr PneT 0 L) -+

tr To L. Since we have already tr PnT2 -+ tr T2, and tr PnV -+ tr V, it
follows that

tr Pn(T + L)2 = tr PnT2 + 2 tr Pn(To L)

+ tr PnV -+ tr(T + L)2. (3.1)

Assumption (i) justifies the application of Theorem 2.1 to this situation.
Thus, since /wk is a Jordan algebra and /tr C /wk, we have

Pn(T + L)2 -+ (T + L)2 (wk). (3.2)

Since Pn(T + L)2 ?: 0, (3.1), (3.2), and Davies' lemma show that
II Pn(T + L)2 - (T + L)211y -+ O. Hence, T + L is in /tr, from which the
lemma follows.

LEMMA 3.3. ftr is II . Ilrclosed.

Proof This is a consequence of assumption (ii) and a standard argument.

LEMMA 3.4. Assume T E s-.. /tr contains T if and only if /tr contains
each spectral projection of T corresponding to a nonzero eigenvalue.
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Proof Let L AiEi be the spectral representation of T and assume ftr
contains each Ei . By Lemma 3.2, ftr contains I.~ AiEi for each positive
integer N. Now, Lemma 3.3 implies T E ftr .

Conversely, assume T E ftr and let E be a spectral projection of T whose
associated eigenvalue Ais nonzero. The eigenvalue Ais then an isolated point
ofsp(T), so PnE ---->- E(wk) by the remarks following the proof ofTheorem 2.1.

We now show tr PnE ---->- tr E, in order to invoke Davies' lemma. First
define PnI = I and let Pn be extended linearly to the domain .r + xl. Let

c = min{1 A- Ai I 1 Ai E sp(T), It; oF A},

and let Cf'i be a unit eigenvector of T with eigenvalue A; different from A.
Cauchy's inequality on the positive linear functional (PnO Cf'; , Cf'i) together
with the obvious inequality cE ~ E I T - Ai 1shows

c2(PnECf'i , Cf'i)2 ~ (PnECf'i , Cf'i)(PneT - A;)2 Cf'i , Cf'i)'

Hence,

c2(PnECf'i , Cf'i) ~ (PneT - Ai)2 Cf'i , Cf'i)

= (Pn(T - A;)2 Cf'i' Cf'i) + «(T - A;)2 Cf'i, Cf';)

= «(PnP - T2) Cf'i' Cf'i) - 2A;«(PnT - T) Cf'i, Cf'i)

~ (I PnP - T2j Cf'i, Cf';) + 211 Til (I PnT - TI Cf';, Cf';).

Summing this over any o.n. set {Cf'i} of eigenvectors whose eigenvalues differ
from A, we deduce

which tends to zero. Therefore,

L «(PnE - E) Cf'; , Cf';) = L (PnECf'i , Cf'i) ---->- 0, (3.3)

where {Cf';} is an o.n. set spanning Range E.l.
Now, let {ifij} be an o.n. basis for Range E. Since {ifij} is a finite set and

PnE ---->- E(wk),

(3.4)

By (3.3) and (3.4), tr(PnE - E) ---->- 0 as required. Davies' lemma implies
II PnE - E 11.9"" ---->- O. Since £2 = E it follows that E E ftr .

COROLLARY 3.5. ftr is closed under squares.

This completes the proof of Theorem 3.1. As in the preceding section,
we forego the formulation of an analog of Theorem 1.3.
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IV. CONCLUDING REMARKS
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Theorem 1.3 was conjectured in the author's thesis [7], where it was
proved for the elementary case when d = M n .

Theorem 1.4 is almost as old as Korovkin's theorem. It is essentially the
same as Theorem 1.2 of [6], where the positivity-preserving operators are
assumed to form a semigroup. Nelson's proofdoes not require this hypothesis,
however.

Many of the results here are true when one considers algebras of operators
on a real Hilbert space. However, conclusion (b) of Theorem 1.3 fails, as
shown by this example: Let d be the algebra of 3 X 3 matrices with real
entries, where transposition plays the role of involution. Define P: d --+ d by

where z = a33 + al2 - a21 + al 3 - a31 • Since P leaves fixed each symmetric
matrix, the constant sequence Pn = P satisfies the hypotheses ofTheorem 1.3.
Let

(
0 ° 0)T= 010,
000 (

0 I 2)
L=300.

000

Then P leaves fixed T = T* and T2, and also leaves fixed L, V, and L * 0 L
(not to mention L*, L*2, L*L, and LL*), so that T and L are in rei. Never
theless, To L <t rei. The trouble is that P does not commute with involution.

Since the Jordan product is not well known, a brief word describing its
relationship to the ordinary product may be in order. Two identities are

TLT = 2To (To L) - (To T) 0 L,

(TL - LTpj4 .-: (T 0 L)2 - To (V 0 T) - L 0 (T2 0 L) + po V.

These show that if a Jordan algebra contains T and L, then it contains TLT
and (TL - LT)2. It also can be shown that if T1 , ... , Tn are in a Jordan
algebra, then so is their symmetric product

(lin!) I T7T (I) ... T,,(n)

where 7T ranges over all permutations of n letters.
Topping [10] discusses weakly closed Jordan algebras of self-adjoint

operators.
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